Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
J Neurosci Res ; 101(4): 492-507, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36602162

RESUMO

Several non-verbal cognitive and behavioral tests have been developed to assess learning deficits in humans with Down syndrome (DS). Here we used rodent touchscreen paradigms in adult male mice to investigate visual discrimination (VD) learning and inhibitory control in the Dp(16)1/Yey (C57BL/6J genetic background), Ts65Dn (mixed B6 X C3H genetic background) and Ts1Cje (C57BL/6J genetic background) mouse models of DS. Dp(16)1/Yey and Ts1Cje models did not exhibit motivation or learning deficits during early pre-training, however, Ts1Cje mice showed a significant learning delay after the introduction of the incorrect stimulus (late pre-training), suggesting prefrontal cortex defects in this model. Dp(16)1/Yey and Ts1Cje mice display learning deficits in VD but these deficits were more pronounced in the Dp(16)1/Yey model. Both models also exhibited compulsive behavior and abnormal cortical inhibitory control during Extinction compared to WT littermates. Finally, Ts65Dn mice outperformed WT littermates in pre-training stages by initiating a significantly higher number of trials due to their hyperactive behavior. Both Ts65Dn and WT littermates showed poor performance during late pre-training and were not tested in VD. These studies demonstrate significant learning deficits and compulsive behavior in the Ts1Cje and Dp(16)1/Yey mouse models of DS. They also demonstrate that the mouse genetic background (C57BL/6J vs. mixed B6 X C3H) and the absence of hyperactive behavior are key determinants of successful learning in touchscreen behavioral testing. These data will be used to select the mouse model that best mimics cognitive deficits in humans with DS and evaluate the effects of future therapeutic interventions.


Assuntos
Síndrome de Down , Humanos , Masculino , Camundongos , Animais , Síndrome de Down/genética , Síndrome de Down/tratamento farmacológico , Síndrome de Down/psicologia , Projetos Piloto , Fenótipo , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos C3H , Modelos Animais de Doenças
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...